If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+96x-3168=0
a = 1; b = 96; c = -3168;
Δ = b2-4ac
Δ = 962-4·1·(-3168)
Δ = 21888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{21888}=\sqrt{576*38}=\sqrt{576}*\sqrt{38}=24\sqrt{38}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-24\sqrt{38}}{2*1}=\frac{-96-24\sqrt{38}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+24\sqrt{38}}{2*1}=\frac{-96+24\sqrt{38}}{2} $
| 9w−7=4w−17 | | 1/4=2/3b | | 811=(0.04x^2)+(16x) | | 3(x-2)-(x-8)=3(x+8) | | 7(d+5)=49 | | x^2-96x-2280=0 | | -3h=-42 | | 811=0.04x^2+16x | | 15=3-3v | | 8=17+m | | 3x=251 | | 3^x×3^x=3^4 | | |5x+10|=40 | | 2x2+14x+10=0 | | 9x2-27x+14=0 | | 3^(x+2)-3^x=72 | | 3(5-h-2(h-2)=-1 | | (w-4)^2=2w^2-7w+14 | | (w-4)=2w^2-7w+14 | | (n-5)7+(n+3)6=22 | | (n-5)7=(n+3)6=22 | | n−5/6+n+3/7=11/21 | | 8×y=64 | | 2=46-3x | | -3.3m=11 | | 4(x+2)=-2(x-4) | | 7n-5=10n-7 | | x2−94=−x−4 | | X²+40x-150=0 | | (3x)(x)/2=24 | | (7+x)/5=18 | | (3x)(x)÷2=24 |